
Challenges in Large Scale Distributed Computing: Bioinformatics 
 
 
 

Terry Disz, Mike Kubal, Robert Olson, Ross Overbeek, Rick Stevens 
Argonne National Laboratory 

The University of Chicago 
The Fellowship For the Interpretation of Genomes 

disz@mcs.anl.gov, olson@mcs.anl.gov, mkubal@mcs.anl.gov, ross@thefig.info, 
stevens@mcs.anl.gov 

 

 
Abstract 

The amount of genomic data available for study is increasing [1] at a rate similar to that of Moore’s Law [2]. 
This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and 
examination of this data. The growing availability of large scale computing grids coupled with high-performance 
networking [3] is challenging computer scientists to develop better, faster methods of exploiting parallelism in these 
biological computations and deploying them across computing grids. 

 
In this paper, we describe two computations that are required to be run frequently and which require large 

amounts of computing resource to complete in a reasonable time. The data for these computations are very large 
and the sequential computational time can exceed thousands of hours. We show the importance and relevance of 
these computations, the nature of the data and parallelism and we show how we are meeting the challenge of 
efficiently distributing and managing these computations in the SEED [4] project. 
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1. Problems in Modern Bioinformatics 

1.1. Protein Structure 
In Texas, folks put a lot of thought and effort 

into making good chili. So to win the “Annual Texas 
Chili Cook-Off” and the $10,000 prize money is no 
small feat. One needs the right recipe, choicest 
ingredients, and proper cooking equipment. A few 
years back however, a guy won and he didn’t possess 
any of those things. One of the pleasures of attending 
the Texas Chili Cook-Off is sampling all the 
contestants’ efforts. This fellow visited each booth 
for a sample, but instead of savoring it, he saved it. 
And when he got back to his booth with his samples, 
he dumped them into his empty pot. It was not until 
he had been declared the winner that anyone realized 
he didn’t have any cooking equipment other than his 
one pot. 

In the world of bioinformatics, a lot of folks are 
going to painstaking efforts to “make good chili”, and 
we should all be grateful to them. But sometimes, we 
get the best results by integrating the output from 
several of these efforts. The SCOPmap[5] program 
takes this approach. SCOPmap applies several 
sequence and structure comparison tools to a query 
protein and combines the results to find homologs, 
sometimes remote homologs, already in the 
SCOPmap database, and thus determine the structural 
classification of the protein and possible evolutionary 
links between families of proteins. The four sequence 
comparison tools used, listed in increasing order of 
sensitivity of remote homologs are BLAST[6], RPS-
BLAST, PSI-BLAST[7], and COMPASS[8]. The 
structure comparison tools used are MAMMOTH[9] 
and DaliLite[10]. 

Since remote homologs can have similar amino 
acid residue conservation patterns, but lack overall 
sequence similarity SCOPmap contains two 
additional programs that look to identify remote 
homologs by conservation analysis which requires 
the output from both the structural and sequence 
comparison tools. SCOPmap was able to make the 
correct structural classifications for 81.6% of the 
non-trivial, those not able to be detected by gapped 
BLAST, protein domains tested. 

Possessing the structural classifications for as 
many of the proteins in our database as possible will 
be a valuable resource in our efforts to accurately 
annotate protein functions. In addition to helping find 
proteins that may perform the same function as our 
query protein, despite a low degree of overall 
sequence similarity, the structural information will 
help us disambiguate protein families into more 
discrete sets. Having more well-defined protein 

families will lead to better annotations with other 
annotation tools and approaches. Even after the 
function of a protein is determined, the structural 
classifications will aid researchers in determining 
how the protein actually performs its job. 

 
The compute resources for any one of sequence 

or structure applications can be significant when 
applied to a large number of proteins, integrating 
them all together can make waiting for the results a 
project for three generations of bioinformaticians.  
Running SCOPmap on one of our machines 
(Macintosh G5) for just one protein out of the million 
in our database takes about an hour. To run 
SCOPmap for all of our proteins would take 
approximately 100 years on our single machine. 

The good news is that the project of finding the 
SCOP classification for each protein in our database 
can be broken down into independent parallel jobs 
suitable for solving on a large computational grid. 

 

1.2. Sequence Similarities 
Recent analysis by Gordon Pusch of Fellowship 

for the Interpretation of Genomes forecasts that the 
1000th microbial genome will become available 
sometime in 2008. For the field of comparative 
genome analysis this prospect is both daunting and 
mouth-watering. Since many similar genes, protein 
functions, cellular processes and structures are 
conserved across diverse sets of organisms, the 
greater the number of genomes included in the 
analysis, the more genes with previously unknown 
functions can be assigned a potential function. The 
number of similarities detected increases 
proportionally to the square of the number of 
genomes used [11]. According to a recent statistical 
model, we have not yet begun to “exhaust the power 
of comparative genome analysis,” and a significant 
amount of the protein sequence space still needs to be 
explored [12]. The benefits of possessing the 
similarities for as many genes as possible are not 
limited to determining the function of genes that are 
similar to others. Functionally related genes (genes 
that participate in the same process) often are 
clustered together in the DNA. In organism A, 3 out 
of 4 genes in a cluster may have similarities to a 
cluster of genes in organism B. The gene in organism 
A with no similarity to anything else has an unknown 
function. By comparing the genomic context 
(adjacency of genes, direction of transcription, fusion 
of  two genes in one organism to one gene in another 
organism) of the gene clusters in organism A and 
organism B, it may be possible to map the function of 



a gene in organism B to a gene in a cluster with no 
sequence similarity in organism A.   

With all the benefits of similarities, it is no 
wonder that after each new genome is sequenced and 
has its genes called, the first thing everyone wants to 
know is how similar is every gene in this new 
genome to every gene in every other genome in the 
database, and how similar every gene in every 
organism in the database is to every gene in this new 
genome. In the SEED, an open-source framework for 
comparative analysis and genome annotation, the 
current set of similarities just described is about GB 
in size. 

1.3. Characteristics of the problems 

1.3.1. SCOPmap 

The SCOPmap calculation, while itself rather 
complex, appears to the user as a simple shell script 
invocation. It takes as input a PDB file [13] 
containing the sequence data for the gene we are 
considering, and generates a file containing the 
structural classification information. The data transfer 
requirements for this are hence minimal, but the 
SCOPmap installation with its component databases 
is rather large, around seven gigabytes, and requires 
careful installation. An individual invocation of the 
SCOPmap program can take anywhere from a few 
minutes to many hours. In following figures we see a 
scatter plot and histogram relating the size of the 
input sequence (here, from genes in Escherichia coli 
K12) to the observed runtime. The majority of the 
runs are within a few hours of runtime, but there are a 
number of outliers requiring significantly long 
runtimes (see the following for a histogram of the 
runtime data); these outliers become significant when 
we consider approaches for monitoring long-term job 
execution.
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1.3.2. Similarity Computations 

The similarity computation is likewise simple to 
execute. Given a database of known sequence data 
(which has generally been curated to remove 
redundant sequences, retaining only the longest 
sequence containing zero or more shorter sequences 
which are suffixes of this longest sequence. We call 
this longest sequence the principal synonym for it and 
its suffixes. Our nonredundant database, or NR, 
contains just the principal synonyms. For a set of 
sequences on which we wish to compute similarities 
to sequences in the NR, we need only invoke the 
BLAST [6] application with the correct parameters. 
Due to the sheer volume of sequence data, this can be 
a hugely time-consuming task. Unlike the SCOPmap 
computation, the expected runtimes for the similarity 
computation can be fairly accurately predicted. On 
modern cluster nodes, we have measured BLAST 
runtimes of around 180 milliseconds per character of 
input sequence when comparing to a NR containing 
around 2.5 million sequences. This means that an 
initial computation of similarities of all 2.5 million 
sequences against each other could take nearly five 
years on a single processor. 



2. Problem Solving Approach 
The larger problem we now face is overcoming 

the challenges in attempting to solve a large 
SCOPmap or similarity calculation on a large 
computational grid. 

These bioinformatics jobs can be viewed as 
many related but distinct computations. Related in 
that they use the same base data sets and the same 
code and that the output from them is collected 
together into a unit. Distinct in that each computation 
can proceed independent of any other computation 
(although there are optimizations to be had with the 
use of the common data sets). Some jobs can require 
tens of thousands of individual computations, the 
serial computation of which could take thousands of 
hours. While the time per computation is similar 
throughout the job, there are some significant 
exceptions as noted in the SCOPmap discussion.   

Ideally, we would be able to send these jobs into 
a grid-based scheduler and have that scheduler work 
with the resource managers at each cluster to dispatch 
the individual computations as efficiently as possible, 
something along the lines of a Community Scheduler 
[14]. While there are proposals and experiments with 
such a facility [15], in general we are far from being 
able to do that on the clusters we are able to access.  

Typically, the scheduler interface at the clusters 
we use  is a variant of, or similar to the Portable 
Batch System [16], first developed in 1994 at NASA. 
This system is primarily a resource manager – it 
matches user resource requests against available 
resources and policy for an individual cluster and 
queues jobs accordingly.  A resource request is 
basically the number of nodes required and for how 
long. The types of jobs usually run on these clusters 
are much smaller than what we are interested in; the 
2004 mean for all jobs on our Jazz cluster was 10 
nodes and 2.94 hours per request. 

.Several thousand jobs launched into a traditional 
batch scheduler will overrun the available resources 
ending in job failure. In addition, the sheer number of 
computations we must perform for a given job 
require that we schedule computations across 
multiple clusters.  Therefore, the lack of a grid based 
scheduler across our target clusters requires that we 
develop our own methods for workflow management, 
job management and submission.  

The usual job scheduling on these clusters is 
“push” based, i.e., the scheduler acts as a master 
controller, queuing and dispatching work to compute 
resources. The underlying model is of a job 
consisting of a closely related set of computations 
that start and finish together. If any one of the 
processes for a job fails, the entire job is considered 
to have failed. The user asks for more time than is 

needed to avoid termination of the job before 
completion. While the user is only billed for the time 
actually used, one can’t help but regret the loss of the 
remainder of the available time if the user had more 
work to be done. 

Our computations don’t follow this model; in 
fact, it would be quite costly to lose progress on all 
computations if any one of them failed. When a 
computation is completed, there is almost always 
more work that could be done in the remainder of the 
allocated time, if only one could get somehow obtain 
the unit of work. 

 Because of these job differences and the 
complexity in having a central scheduler maintain job 
and resource state across multiple clusters and the 
difficulty of trying to launch tens of thousands of 
computations in this manner, we choose to 
implement a simpler and more efficient model that is 
more in keeping with our requirements.  

Self scheduling tasks have been the subject of 
research and writings for many years[17] and more 
recently utilized in bioinformatics computations[18]  . 
The idea is to have computational processes ask for 
work from a “pool of work” when they are ready, 
rather than having the master scheduler ascertain 
their readiness state and then push work out to them. 
This simplifies the task of the owner of the work to 
one of only maintaining the state of the work to be 
done and not the state of the computational resources.  

When we schedule a job onto a cluster, we are 
scheduling a “worker”, that works independent of 
any other workers on the cluster. Each worker is 
given the address of a server we call an “AskFor” 
[17] server which dispenses units of work upon 
request from a worker. A worker stays active over the 
entire allocated time, continually asking for and 
processing work, making better utilization of 
allocated time.  Since a worker will not quit before 
the allocated time has run out, it is invariable that 
some work will not be completed. The server keeps 
track of work and will reschedule uncompleted work. 
If the size of allocated time to time per task is 
sufficiently large, this overhead is an acceptable price 
to pay for the higher utilization we get of our 
allocated time.  

2.1. Resources 
The resources that we are primarily targeting to 

solve these problems are loosely coupled clusters of 
computers. Since the computations are entirely 
independent of each other once dispatched, we do not 
rely upon the existence of a fast interconnect between 
the nodes in a cluster (apart from its effect on shared 
file system performance, which we will discuss later).  



The first of our two primary resources is the Jazz 
cluster at the Laboratory Computing Resource Center 
[19] at Argonne National Laboratory. Jazz comprises 
350 compute nodes, each with a 2.4 GHz Intel Xeon 
processor. Half the nodes have 2GB RAM, half have 
1GB RAM. The cluster has 10TB of shared disk 
served as Global File System (GFS) [20] volumes, 
with another 10TB shared as Parallel Virtual File 
system (PVFS) [21]volumes. 

The heavy lifting in our computations is 
provided by the second of our resources, the 
TeraGrid [3] [22] distributed cluster.  The TeraGrid is 
a large distributed cluster spread over nine sites 
across the United States interconnected via a 40 
gigabit per second network. For the purposes of our 
work, we consider each of the TeraGrid sites  as a 
different cluster; the integration of them into an 
overall distributed cluster does not affect the 
technology used in the application. 

The TeraGrid cluster located at Argonne 
National Laboratory is typical of the TeraGrid sites. 
It comprises 62 nodes with dual 1.3 GHz Intel 
Itanium 2 (IA64) processors and 4GB RAM, and 96 
nodes with dual Intel Xeon 2.4GHz processors and 
4GB RAM.  The cluster has 15 TB General Parallel 
File system (GPFS) shared disk, and 5 TB PVFS 
shared disk. For the experiments described here, we 
only used the IA64 nodes.  

2.2. Our implementation 
Our implementation directly models the pool-of-

work abstraction. Each job is divided into a number 
of explicitly defined, independent work units. A 
central broker, the AskFor [17] server,  manages the 
dispatching of these work units to workers; monitors 
and updates a record of the state of the work units; 
and handles the collection of output data upon 
completion of work units. 

We have built three distinct systems 
implementing this model as we gained experience 
with it in real-life operation. 

The first version (MultiBlast) is dedicated to the 
large-scale computation of protein sequence 
similarities via the BLAST sequence comparison tool. 
It implements a simple self-scheduling worker 
infrastructure. The manager is a persistent server 
implemented in the Python scripting language.  It 
maintains the work unit state in memory, writing 
snapshots of that state to disk for use in later restarts 
of the manager. The worker programs are each 
implemented in Python, and maintain a persistent 
TCP connection to the server for use in obtaining 
new work units and in writing results back to the 
server. The workers use the blastall program to 
compute similarities between the input sequences as 

distributed by the manager and a nonredundant 
database that was manually configured.  

The second system is dedicated to the SCOPmap 
computation. The worker/manager communication no 
longer relies upon persistent TCP connections, but 
rather uses XMLRPC messages directed from the 
workers to the manager.  The entire infrastructure is 
asynchronous: the manager state is no longer kept in 
memory, but rather in tables in a relational database. 
The manager itself is not a persistent program, but 
implemented as a set of XMLRPC message handlers 
hosted by an Apache web server that act upon the 
state kept in the database. 

Each request from a worker is of the form 
get_work(job_name, worker_id). The manager 
maintains multiple distinct jobs; each worker picks 
the job from which it wishes to obtain work. The 
worker identifier passed to the manager is used to 
match the results for a particular piece of work to the 
worker responsible for its computation.  

The third system is intended to be a more 
general-purpose tool, suitable at the least for both the 
BLAST and SCOPmap computations. It is also 
constructed to use web service messaging between 
workers and the manager  (via SOAP instead of 
XMLPRC in this case). The manager again maintains 
state in a relational database, and is hosted in an 
Apache web server. The database schema is 
considerably more complex than that used in the 
SCOPmap system, largely due to the support for file 
staging. 

 

3. Challenges 

3.1. File Staging and Cluster Optimizations 
One of the obstacles to the use of the 

MultiBLAST system as originally built is the 
requirement that the search database be manually 
installed on each cluster that is to participate in the 
computation. We address this in the latest software 
by incorporating the concept of cluster work. A 
computational job can specify that there are pieces of 
work that must be done once per cluster, and that this 
work must be completed before noncluster work can 
proceed. In the similarities computation, we define a 
cluster work item for each job that causes the search 
database to be downloaded to shared file system 
space in the cluster, and the BLAST formatdb 
indexing program to be invoked on it.  

For such a mechanism to work, the manager 
must know the cluster affiliation for each worker. We 
currently require a manual registration of each cluster 
with the manager, which results in the assignment of 



a cluster identifier. When each worker starts running, 
it registers with the manager, providing it with its 
cluster identifier.  

 

3.2. Network considerations 
The manager/worker architecture clearly requires 

a reliable network between the components. It must 
have high enough bandwidth in order to allow the 
downloads of any large database files required to 
succeed in a reasonable amount of time, and be able 
to sustain the large flow of connections from the 
workers to the manager. Note, however, that the 
system is resilient to transient failures of the network 
since no persistent connections are required. If these 
transient failures persist longer than the interval the 
manager uses to time out inactive workers, however, 
it is possible for completed work to be thrown away 
by the manager because it comes from workers 
declared out of commission. This can be solved by 
analysis of failure patterns in the worker/manager 
communications and by adjusting the dead-worker 
timeout if necessary (concurrently with working with 
the network administration staff to determine the 
cause of failure of the network, of course). 

The reliance on workers’ ability to connect to the 
manager also requires one to consider the effect of 
firewalls or other network security measures. Clearly, 
the manager must be accessible to the worker hosts; 
either by being located outside any firewalls or by 
having conduits to it installed in any firewall between 
the manager and the workers. The design of the 
system does not require individual workers to be 
open to incoming connections; all communication is 
initiated by workers.  We have encountered large 
clusters in the TeraGrid system that block outgoing 
access from compute nodes; we are currently 
working with the site administrators to solve this 
problem. 

 

3.3. Managing complexity 
Conceptually, each of the distributed 

computation management systems is quite simple. A 
manager maintains state of work units, and workers 
are delivered work upon request, compute the results 
for that work, and return the results. 

In operation, however, the simplicity vanishes in 
a snowstorm of details. We will discuss the 
challenges that we faced with each system, and how 
their resolution led to succeeding design choices. 

The first MultiBLAST system has on the whole 
been quite reliable; we have used it for production 
similarity computation in support of the SEED[4] 

genome annotation system since 2003. The primary 
limitation that it has is that its use is largely manual: 
the user is responsible for staging the nonredundant 
(NR) database onto each cluster that participates in 
the computation and must ensure that the invocation 
of the worker programs on the cluster have the 
correct path to the NR database.  

The use of the persistent worker/manager TCP 
connections is also a potential source of trouble. In a 
very large computation, it is possible that resource 
limits may be exceeded on the server, in terms of the 
number of active connections supported by the 
operating system. In addition, if a connection is 
disrupted for any reason (perhaps a glitch in a wide 
area network), the client will interpret that disruption 
as a signal to exit.  

The persistent connection does however provide 
a key advantage: the manager can know immediately 
if a worker has terminated for some reason and that 
the work unit the worker was processing has to be 
returned to the pool of available work. Without this 
immediate feedback, the manager must rely upon 
periodic updates from the workers to determine when 
a worker has terminated unexpected. Note that even 
with the persistent connections, it is possible for a 
worker to hang in a way that the connection is not 
dropped: for complete reliability, the manager must 
have a mechanism to determine the state of workers. 

The SCOPmap computation system was built 
without such a mechanism under the assumption that 
for the limited scope of the problem being addressed 
that it would not be an important issue. In practice, 
however, it turned out that some of the pieces of 
work took upwards of 20 hours to execute (the 
standard timeslot we used in requesting node time 
from the system schedulers). Without manually 
logging into the compute nodes and checking the 
system load, it was impossible to tell if a client was 
dead, hung, or processing a very long computation. 

We have addressed this issue in the new system 
by introducing worker heartbeats. Each time any web 
service method is invoked on behalf of a worker, the 
database record corresponding to that worker is 
updated with the current timestamp. A “heartbeat” 
method is also defined which has the sole effect of 
updating the timestamp. While a long-running 
computation is executing, the heartbeat method is 
periodically invoked (currently, on a 5-minute basis). 
Given this information, the manager can determine 
which worker records correspond to workers that are 
no longer active. If there are pieces of work which 
are marked as currently being computed on these 
workers they can be returned to the pool of available 
work. 



Even with the mechanism in place to detect 
defunct workers, the worker code is designed to 
detect failure wherever possible and proactively 
notify the manager when a piece of work must be 
aborted. To this end, the worker code carefully 
manages signal handling, detecting the occurrence of 
fatal signals and invoking the work failed web 
service method for the current piece of work. In order 
to maintain as much order as possible, signals are 
masked during the execution of the web service 
interactions with the manager; any signals that arrive 
during the masked time are deferred by the 
application until the point at which signals are re-
enabled. 

3.4. Server scaling issues 
We need this distributed computation 

infrastructure to support very large computations. For 
instance, a computation being used in the 
development of a major SEED release requires the 
computation of pair wise similarities between 
roughly 2.4 million sequences. Using a conservative 
estimate of 180 milliseconds per character of input 
sequence (this estimate derives from observing a 
large number of executions of work units from this 
computation), a sequential execution of the problem 
would take roughly 4.8 years. With the resources we 
appear to be able to realistically obtain on the 
combination of the Jazz and TeraGrid clusters, we 
should be able to complete this computation in under 
two weeks. 

Doing so, however, requires managing a large 
number of individual work units. In order to strike a 
balance between managing scheduling and process 
startup overhead (which argues for large pieces of 
work), and the real-life limitations of working with 
production batch scheduling systems where one 
cannot assume infinitely long job execution (which 
argues for small pieces of work), we are currently 
dividing the work into roughly 20,000 character 
blocks, which translates to around 30-60 sequences 
per work unit, taking roughly 30-90 minutes to 
execute, depending on the actual size of the work unit 
and the capability of the node in use. Thus, the 
manager has to keep track of the current state of over 
42,000 individual pieces of work, the input sequence 
corresponding to that data, and the output similarities.  

We have not attempted to be overly clever in this 
system, and apply brute force methods to the solution. 
We use a well-connected Linux server as the 
manager. It is a powerful machine, with four Intel 
Xeon 2.8GHz processors and 4GB of RAM. The 
database is hosted in a Postgres sql database server 
configured with a large number of shared buffers 
available. In order to avoid any database table 

consistency problems, we completely sequentialize 
all access to the database via a POSIX semaphore in 
the SOAP service code. This has the effect of 
potentially increasing the latency of requests; 
however, the attempts we made to portably use native 
database transaction and locking methodologies have 
not yet succeeded. In practice, our choice of work 
unit size and the fact that there is typically little 
contention for the database lock result in this not 
being a significant problem.  

 

4. Results and Future Work 
 

We have implemented three different versions of 
an AskFor-based manager-worker infrastructure. The 
original MultiBLAST has been used for 18 months as 
a production code in support of computing sequence 
similarities for the SEED project. We regularly run 
the MultiBLAST across the Jazz cluster at Argonne 
and the University of Chicago Teragrid cluster, and 
have consumed over 32,000  node-hours on the Jazz 
cluster alone.  

We have used the AskFor-based SCOPmap 
computation engine to compute SCOPmap protein 
structure information for E. Coli K12 on the Jazz and 
UC Teragrid clusters. This computation took roughly 
3.5 days on an aggregate of 196 nodes across the two 
clusters. The corresponding serial computation would 
have taken over 176 days. 

We are in the process of computing a large 
BLAST similarity run on a collection of clusters 
including Jazz, Teragrid clusters at UC, SDSC and 
NCSA, and the new Teraport cluster also at the 
University of Chicago. This job comprises over 
48,000 individual pieces of work, and is running 
smoothly on the newest MultiBLAST infrastructure. 

We believe the results of these three systems, 
including production and experimental usage, 
validate the AskFor model for use in high-volume 
distributed computations.  

In the future, we envision such as system to be 
an efficient back-end processing engine for novel 
interactive applications in computational biology and 
bioinformatics. A centralized AskFor manager which 
buffers a queue of work units for presentation to a 
large-scale distributed computational engine is a 
useful component in the decoupling of the 
complexities of large distributed computers from the 
smaller-scale, more serial in nature biology 
applications. We envision a number of applications 
of this technology, including 

!" Allowing users to quickly compute 
similarity values for private or newly-



sequenced genomic data for use in 
annotation and other analysis. 

!" Providing high-capacity processing access to 
simple scripting language-based applications 
through the use of web service interfaces to 
the AskFor manager. 

!" Powerful bioinformatics portals that expose 
sophisticated analysis modules to users 
without detailed knowledge of the 
computing systems providing the back-end 
processing. 
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